PairLIE论文详解

文章发布时间:

最后更新时间:

文章总字数:
921

页面浏览: 加载中...

image

PairLIE论文详解

论文为2023CVPR的Learning a Simple Low-light Image Enhancer from Paired Low-light Instances.论文链接如下:

openaccess.thecvf.com/content/CVPR2023/papers/Fu_Learning_a_Simple_Low-Light_Image_Enhancer_From_Paired_Low-Light_Instances_CVPR_2023_paper.pdf

[TOC]

出发点

1.However, collecting high-quality reference maps in real-world scenarios is time-consuming and expensive.

出发点1:在低光照领域,从现实世界中获取高质量的参考照片进行监督学习,既费时又困难,成本昂贵。

因为获得低光环境的照片是容易的,而此低光照片对应的亮度较大的参考图片是难得的。

2.To tackle the issues of limited information in a single low-light image and the poor adaptability of handcrafted priors, we propose to leverage paired low-light instances to train the LIE network.

Additionally, twice-exposure images provide useful information for solving the LIE task. As a result, our solution can reduce the demand for handcrafted priors and improve the adaptability of the network.

出发点2:为了解决手动设置的先验的低适应性,减少手动设置先验的需求,同时提升模型对陌生环境的适应性。

创新点

The core insight of our approach is to sufficiently exploit priors from paired low-light images.

Those low-light image pairs share the same scene content but different illumination. Mathematically, Retinex decomposition with low-light image pairs can be expressed as:

image

创新点1:作者利用两张低光图片进行训练,以充分提取低光图片的信息。

instead of directly imposing the Retinex decomposition on original low-light images, we adopt a simple self-supervised mechanism to remove inappropriate features and implement the Retinex decomposition on the optimized image.

创新点2:作者基于Retinex理论,但是并不循旧地直接运用Retinex的分解。作者采用一个简单的自监督机制以实现不合理特征的去除(通常是一些噪音)以及更好地实现Retinex理论。

模型

image

将两张同一场景不同曝光的低光图片送入训练中,图片I1与I2先经过P-Net去除噪音,得到i1与i2,然后利用L-Net与R-Net分解为照度L1与反射R1(对应有L2与R2)。

在测试,只需要输入一张低光照图片I,经过P-Net的噪音去除,得到i,然后用L-Net与R-Net分解为照度和反射,然后对照度L进行增强,操作为g(L),把增强结果与反射R进行元素乘法,得到增强后的图片Enhanced Image。

设计及其损失

Note that, this paper does not focus on designing modernistic network structures. L-Net and R-Net are very similar and simple,

1.模型使用的L-Net与R-Net十分简单。整体架构只是单纯的卷积神经网络。

Apart from L-Net and R-Net, we introduce P-Net to remove inappropriate features from the original image. Specifically, the structure of the P-Net is identical to the R-Net.

2,P-Net被设计用于去除不合理特征。

Note that the projection loss needs to cooperate with the other constraints to avoid a trivial solution.i,e.,i1 = I1.

3.Projection Loss:最大程度限制去除不合理特征后的i1和原始低光图片I1的区别。

这个损失需要避免一个特例,即降噪后图片与原图相同,即未降噪。

Since sensor noise hidden in dark regions will be amplified when the contrast is improved.

In our method, the sensor noise can be implicitly removed by Eq. 1.

4.Reflection Loss:通常用传感或摄影设备拍摄低光场景照片会携带一定的设备噪音,这个损失最大限度保证两张图片的反射是相同的,减少传感或摄影设备的影响,这是因为图片场景的内容相同。

这个损失是确保反射的一致性。

is applied to ensure a reasonable decomposition.

is to guide the decomposition.

Specifically, the initialized illumination L0 is calculated via the maximum of the R, G, and B channels:

5.Retinex Loss:Retinex损失是为了限制分解组块L-Net和R-Net以满足Retinex的理论要求。

本文毕

打赏
支付宝 | Alipay
微信 | Wechat